
The University of New South Wales

Final Exam

2007/11/19

COMP3151/COMP9151

Foundations of Concurrency

Time allowed: 3 hours (8:45–12:00)

Total number of questions: 5

Total number of marks: 45

Textbooks, lecture notes, etc. are not permitted, except for 2 double-

sided A4 sheets of hand-written notes.

Calculators may not be used.

Not all questions are worth equal marks.

Answer all questions.

Answers must be written in ink.

You can answer the questions in any order.

You may take this question paper out of the exam.

Be concise — excessively verbose answers will be penalised. Use a

pencil or the back of the booklet for rough work. Your rough work will

not be marked.

Shared-Variable Concurrency (15 Marks)

(8 marks)

Give all possible final values of variable x in the following program. Prove your answer correct
in Andrews’ PL. (See the appendix for the logic.)

1 int x = 1, i = 0;
2 co while (i < 3) {
3 〈 x = x ∗ 2; 〉
4 〈 i = i + 1; 〉
5 }
6 // 〈 x = x − 1; 〉
7 oc

(7 marks)

Is the following barrier algorithm for n processes correct? Justify your answer.

1 sem arrival = 1, out = 1, departure = 0;
2 int counter = 0;
3
4 procedure B () {
5 P (arrival);
6 counter++;
7 if (counter == n) {
8 P (out);
9 V (departure);

10 }
11 V (arrival);
12 P (departure);
13 V (departure);
14 P (arrival);
15 counter−−;
16 if (counter == 0) {
17 P (departure);
18 V (out);
19 }
20 V (arrival);
21 P (out);
22 V (out);
23 }
24
25 process S[i = 1 to n] {
26 for[j = 0 to k] { # k is defined elsewhere
27 task(i , j); # tasks are defined elsewhere
28 B (); # barrier
29 }
30 }

2

Message-Passing Concurrency (30 Marks)

You are not allowed to use shared mutable state in answers to the programming questions.

(8 marks)

The Bear and the Honeybees. Given are n honeybees and a hungry bear. They share a pot of
honey. The pot is initially empty; its capacity is H portions of honey. The bear sleeps until
the pot is full, then eats all the honey and goes back to sleep. Each bee repeatedly gathers one
portion of honey and puts it in the pot; the bee who fills the pot awakens the bear.

Write a simulation with one process for the bear and n processes for the honeybees.

(12 marks)

Consider the following processes. First we have two producers S1 and S2.

S1: s1

A!0
l1

A!3

true →

t1

S2: s2

B!1
l2

B!2

true →

t2

Process M merges the output of S1 and S2 and sends it along channel C.

M : s3

A?x
l3

B?y
l′3

x < y → C!x l′′3

x ≥ y → C!y l′′′3

A?x

B?y

t3

Finally we have a consumer K.

K: s4

C?z
t4

Prove {true}S1‖S2‖M‖K {x = 3 ∧ y = 1 ∧ z = 0} using either the proof method of Levin &
Gries or AFR for 10 marks or the closed product for 6 marks. Disprove termination for 2
marks.

3

(10 marks)

The H2O problem.

Two kinds of atoms, H’s and O’s, enter a reaction chamber. An O atom cannot leave until it
meets two H atoms and an H atom cannot leave until it meets an O atom. Each atom leaves
the chamber—without meeting any other processes—once it has met the required number of
other processes.

Develop a server process to implement this synchronisation. Show the interface of the processes
modelling individual H and O atoms. It is recommended to use the multiple primitives notation
(in ... ni).

For 5 bonus marks generalise your solution to be parametric in the molecule to be built such
that it works, e.g., for propanol (C3H8O or CH3CH2CH2OH).

4

Andrews’ PL (a Proof System for MPD Annotations)

Assignment axiom

{φ[e/x]}x = e {φ} ass

Composition rule

{φ}S1 {ψ} , {ψ}S2 {ψ′}
{φ}S1;S2 {ψ′}

comp

If-Else statement rule

{φ ∧ b}S1 {ψ} , {φ ∧ ¬b}S2 {ψ}
{φ} if (b) S1 else S2 {ψ}

if

While statement rule

{φ ∧ b}S {φ}
{φ} while (b) S {φ ∧ ¬b}

while

Rule of consequence

φ′ → φ, {φ}S {ψ} , ψ → ψ′

{φ′}S {ψ′}
cons

Await statement rule

{φ ∧ b}S {ψ}
{φ} <await (b)S> {ψ}

await

Co statement rule

{φi}Si {ψi} hold and are interference free

{
∧

i φi} co S1 // . . . // Sn oc {
∧

i ψi}
co

Semaphore wait rule

φ ∧ s > 0 → ψ[s−1/s]

{φ} P(s) {ψ}
P

Semaphore signal rule

φ→ ψ[s+1/s]

{φ} V(s) {ψ}
V

Simplifying assumption: arithmetic on bounded types such as int does not wrap around silently.
Overflow and underflow errors lead to abnormal termination which renders program behaviours
irrelevant to partial correctness arguments such as proofs in PL.

5

